本篇综述的主要作者里,张康教授与张良方教授都是生物医学工程领域的专家,夏慧敏教授是生物材料临床应用的小儿外科专家;这篇综述也以相当大的篇幅介绍了如何通过生物工程的方法,促进组织再生。接下来,我们也将介绍这些技术。
1. 生物材料的选择
说到生物材料,首先要考虑到就是它们的组成。常规考虑而言,生物材料可以被分为三类:合成生物材料、天然生物材料、以及合成-天然混合生物材料。合成材料指的是一类具有生物兼容性和生物降解性的多聚分子,其理化和机械性质能与受损的组织相匹配,协助组织再生。举例来说,癸二酸与甘油能聚合成PGS材料,其3D网状结构能很好地模拟天然细胞外基质的可塑性,从而有望用于促进骨髓干细胞分化。
天然材料包括了蛋白质、多糖、以及聚羟基烷酸酯,它们能被用作内源性再生的结构性支架材料。比如BMP7能被载入到I类胶原蛋白组成的支架中,用于治疗患者腓骨缺损。在一项临床试验中,接受治疗的患者在6周后,新骨骼有显著的形成,彰显了这种材料的治疗潜力。
▲一些可植入和可注射的生物材料(图片来源:《Nature Reviews Materials》)
合成材料与天然材料各有各的优势与短板——合成材料不易在人体内降解,可能会引起身体的反应;而天然材料的一些理化和机械属性较弱,且容易被酶所降解。为了取长补短,研究人员们决定将两者进行混合,以求带来更好的生物材料。合成-天然混合生物材料应运而生。目前,我们在这种材料的开发上也已取得了一些成果,比如在聚四氟乙烯的网络上,可以覆盖上一层明胶水凝胶,用于药物分子的递送。
2. 生物材料与3D结构
为了促进组织再生,植入生物体的生物材料必须能模拟细胞外基质的特定特性:它们需要有足够的通透性,让营养与代谢产物可以通过;它们也需要有足够的机械强度,这对于组织再生非常关键。目前来看,与可溶性前体互相交联的水凝胶(可以是合成材料,也可以是天然材料)是一个良好的平台:它们有巨大的“表面积/体积”比,也有很高的孔隙率,能很好地提供类似于生物体的微环境,指导细胞的3D排列,以及组织的de novo(从头)合成。
3D打印技术的进步,则让我们能进一步造出能模拟天然细胞外基质的结构。通过使用生物兼容的材料,我们能使用合适的交联方式,造出可用于内源性再生的支架结构。目前,我们已能用3D打印技术,打印出具有三个不同区域,且区域彼此相连的材料,用于牙周的修复——这种材料的第一部分为100微米的通道,是牙骨质与牙本质的接触界面;第二个部分为600微米的通道,提供给牙周韧带;第三个部分是300微米的通道,供牙槽骨使用。
3. 生物材料与功能
这些生物材料有着许多应用,其中之一就是对能促进组织重生的分子进行包裹与递送。在通常环境下,这些分子不稳定,容易被降解,使得它们的有效期变得较短。而生物材料则能将这些分子包裹其中,并逐渐释放,确保能长期保持所需的水平。目前,人们已经尝试对细胞因子、转录因子、以及调控性的趋化因子进行包裹与递送,并能通过改变生物分子的一些理化性质,对内容分子释放的动力学进行调控。
对于另一些信号分子来说,将其附着于支架表面,能有利于其执行功能,改善细胞的附着,促进细胞的增殖,甚至指导细胞的分化。
▲生物材料的一些应用(图片来源:《Nature Reviews Materials》)
除了以上两方面外,生物材料还有许多其他的潜在应用。譬如,我们可以在纳米纤维的支架外附上合成的脂双层,将这些纤维与外部环境隔绝开。这样一来,脂双层表面的蛋白有望更好地与受体相结合。另一些研究指出,天然衍生的细胞膜能有同样的作用。而细胞膜包裹技术,许多具有疗效的纳米颗粒有望诞生,造福患者。